A recursive algorithm for Markov random fields
نویسندگان
چکیده
We propose a recursive algorithm as a more useful alternative to the Brook expansion for the joint distribution of a vector of random variables when the original formulation is in terms of the corresponding full conditional distributions, as occurs for Markov random fields. Usually, in practical applications, the computational load will still be excessive but then the algorithm can be used to obtain the componentwise full conditionals of a system after marginalising over some variables or the joint distribution of subsets of the variables, conditioned on values of the remainder, which is required for block Gibbs sampling. As an illustrative example, we apply the algorithm in the simplest nontrivial setting of hidden Markov chains. More important, we demonstrate how it applies to Markov random fields on regular lattices and to perfect block Gibbs sampling for binary systems.
منابع مشابه
Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields
We present telescoping recursive representations for both continuous and discrete indexed noncausal Gauss-Markov random fields. Our recursions start at the boundary (for example, a hypersurface in R, d ≥ 1) and telescope inwards. Under appropriate conditions, the recursions for the random field are differential/difference representations driven by white noise, for which we can use standard recu...
متن کاملRecursive computing for Markov random fields
We present a recursive algorithm to compute a collection of normalising constants which can be used in a straightforward manner to sample a realisation from a Markov random field. Further we present important consequences of this result which renders possible tasks such as maximising Markov random fields, computing marginal distributions, exact inference for certain loss functions and computing...
متن کاملRecursive Estimation of Gauss-Markov Random Fields Indexed over 1-D Space
This paper presents optimal recursive estimators for vector valued Gauss-Markov random fields taking values in R and indexed by (intervals of) R or Z. These 1-D fields are often called reciprocal processes. They correspond to two point boundary value fields, i.e., they have boundary conditions given at the end points of the indexing interval. To obtain the recursive estimators, we derive two cl...
متن کاملExact and approximate recursive calculations for binary Markov random fields defined on graphs
In this paper we propose computationally feasible approximations to binary Markov random fields. The basis of the approximation is the forward-backward algorithm. This exact algorithm is computationally feasible only for fields defined on small lattices. The forward part of the algorithm computes a series of joint marginal distributions by summing out each variable in turn. We represent these j...
متن کاملEstimation of GMRF's by Recursive Cavity Modeling
This thesis develops the novel method of recursive cavity modeling as a tractable approach to approximate inference in large Gauss-Markov random fields. The main idea is to recursively dissect the field, constructing a cavity model for each subfield at each level of dissection. The cavity model provides a compact yet (nearly) faithful model for the surface of one subfield sufficient for inferri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002